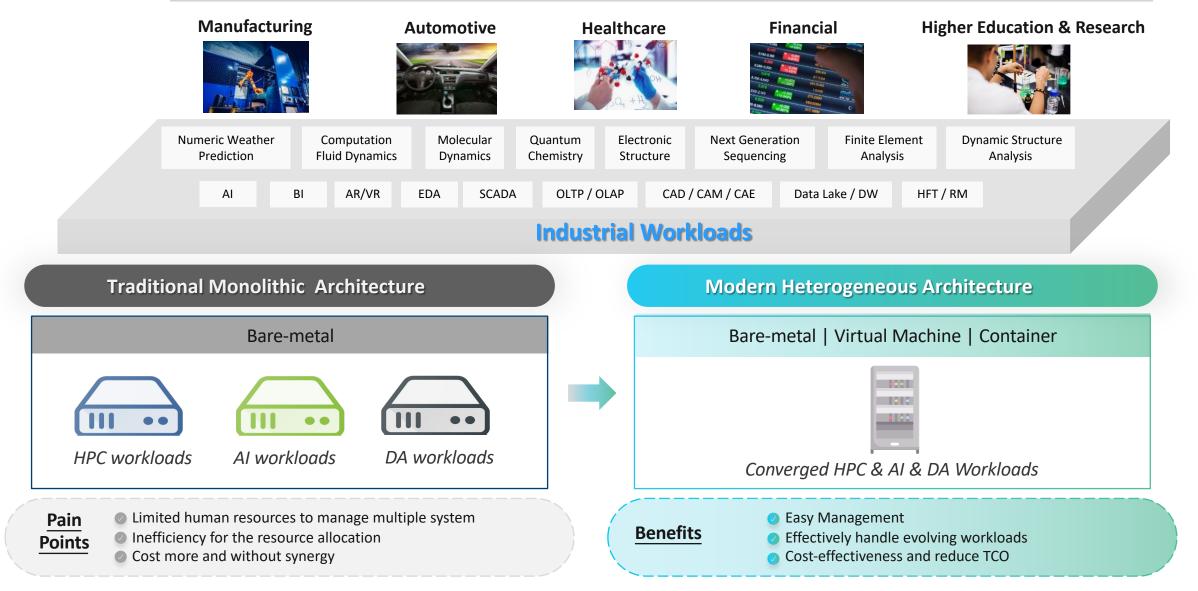


Optimizing HPC System Architecture through Workload-Driven Design Strategies

Stephen Chang


Agenda

- Introducing the significance of workload-driven design in maximizing HPC system efficiency
- Key architectural considerations for scalability and performance in optimizing HPC system architecture
- Reference architecture and best practices in workload-driven infrastructure for HPC/AI workloads

Ct Infrastructure for HPC / AI / DA Workloads

Significance of workload-driven design in maximizing HPC system efficiency

Workload-Centric Approach Performance Optimization Resource Allocation Customization

Designing HPC/AI systems based on workloads

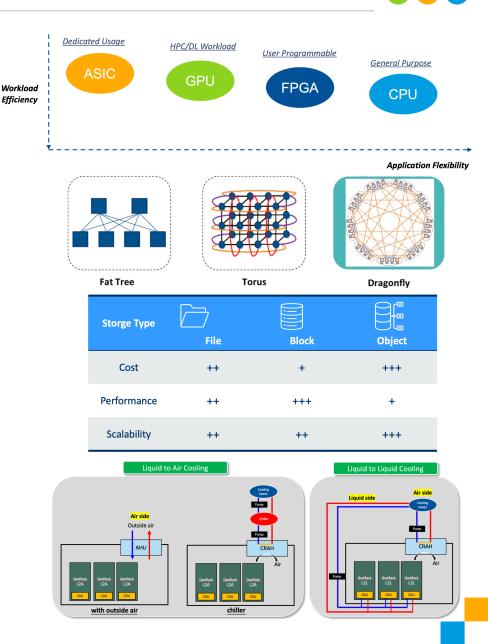
Scalability

Performance Bottlenecks

Heterogeneous Architectures

Load Balancing

Adaptive Strategies


Workload-driven design Improves performance, scalability, and resource utilization Improved Performance Efficient Resource Utilization Cost-Effectiveness Future-Proofing

System-Centric Design vs Workload-Driven Design

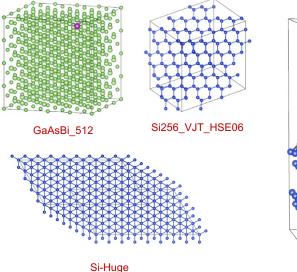
	Planning System Architecting Function Function<	Planning Workload-Driven Rapid Deployment Design Mintegration and Automation Service Provisioning
	Traditional System-Centric Design	Modern Workload-Driven Design
	c. Charachtettau	
Pros	 Simplicity: Easy to deploy and manage Familiarity: Established design principles and practices Cost-effectiveness: Lower upfront costs 	 Optimized Performance: Tailored architecture for specific workloads Scalability: Efficiently scales to handle increased workload demands Efficient Resource Utilization: Allocates resources effectively

C Key Architectural Considerations

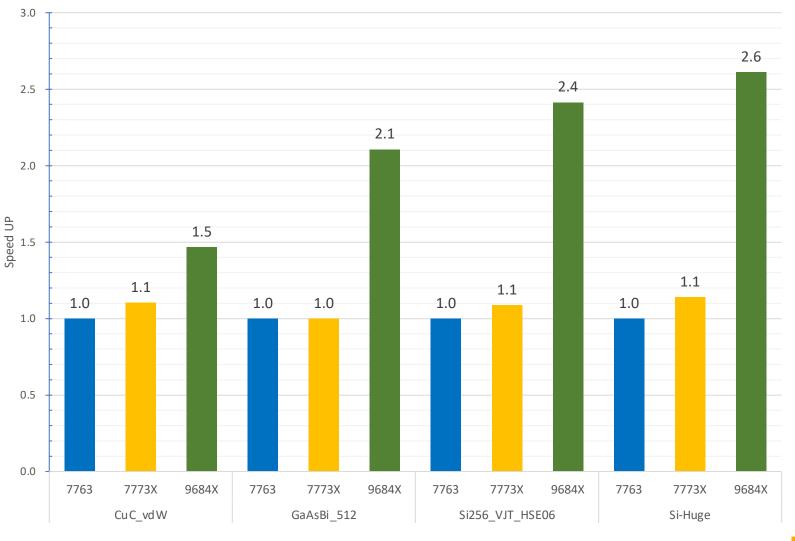
- Understand the characteristics and requirements of different workloads to tailor the system architecture
 - Workload Types
 - Identify different types of workloads such as scientific simulations, data analytics, machine learning, and graphics rendering.
 - Each workload type has unique computational patterns and requirements.
 - Computation Characteristics
 - Study the computational requirements, including the nature of computations (e.g., floating-point intensive, integer operations), parallelism potential, and load balance.
 - Memory Requirements
 - Determine the memory demands of the workload, including the working set size, memory access patterns, and data locality
 - Communication Patterns
 - Analyze the communication patterns between compute nodes or processes within the workload.
 - This includes examining the volume, frequency, and patterns of data exchanges.
- Highlighted Considerations:
 - Processor architecture and selection (e.g., multi-core, many-core, accelerators)
 - Memory hierarchy and bandwidth requirements
 - Interconnect technologies and topologies
 - Storage system design (e.g., local, distributed, parallel file systems)
 - Power and cooling considerations for high-density and high-performance systems

www.qct.io

Architectural Consideration for CPU



\sim


VASP

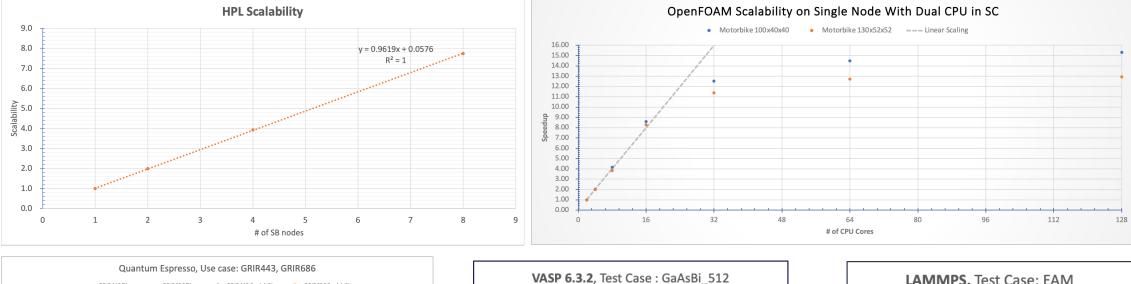
The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic-scale materials modeling based on first principles.

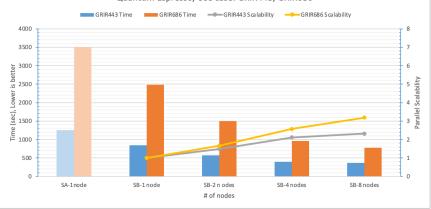
- Version: 6.3.2 ٠
- Release Date: 28th June 2022
- Web site : https://www.vasp.at/ ٠
- Compile with : Intel oneAPI 2023.1.0 ٠
- Test case : CuC_vdw, GaAsBi-512, Si256-VJT-HSE06 and Si-٠ Huge
- VASP work support : Jyh-Pin Chou, Associate Professor, Dep. ٠ of Physics, NCUE

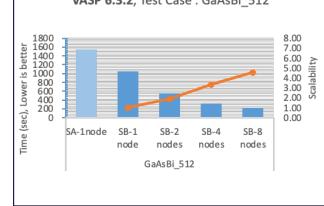
VASP with 2x AMD 7763 (64c/2.45G/256MB), 7773X (64c/2.2G/768MB), and 9684X (96c/2.55G/1152MB)

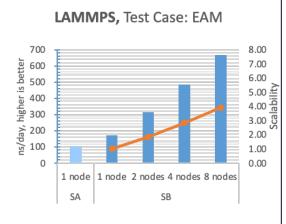
CuC vdw

Architectural Consideration for GPU

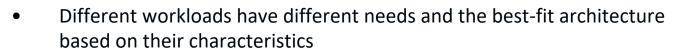

Wo	System A CPU:GPU (1:1)	System B CPU:GPU (1:2)	System C CPU:GPU (1:4)	
	Computational Fluid Dynamics (CFD)	O/V	0	-/0
	Molecular Dynamics (MD)	V	O/V	0
	Numerical Weather Prediction (NWP)	0	-/0	-
Scientific Simulations and Modeling	Computational Chemistry	V	0	0
	Quantum Mechanics / Physics	O/V	-/0	-
	Next-Generation Sequencing (NGS)	0	-/0	-
	Finite Element Analysis (FEA)	0	-/0	-
	Cloud Gaming	-	V	-/0
	3D Modeling and Computer-Aided Design (CAD)	0	V	-/0
	Video Transcoding and Streaming	-	V	-/0
	Virtual Reality (VR) and Augmented Reality (AR)	-	V	-
Image Processing and Visualization	Scientific Data Visualization and Analytics	-/0	V	-
	Medical Diagnostics, Imaging and Visualization	-/0	V	-/0
	Virtual Desktop Infrastructure (VDI)	-	V	-
	Video Analytics and Surveillance	-	V	-
	Image Classification and Object Detection	V	V	O/V
	Natural Language Processing (NLP) with Large Language Model (LLM)	0	-/0	V
Machine Learning and Artificial Intelligence	Virtual Assistants and Chatbot	-/0	-/0	-
	AI Generated Content (AIGC) with Generative Adversarial Networks (GAN)	0	0	V
	Recommendation Systems	O/V	O/V	-/0


System A: MBX-based with 1 GPU | System B: PCIe-based with up to 4 GPUs | System C: SXM5-based with up to 8 GPUs

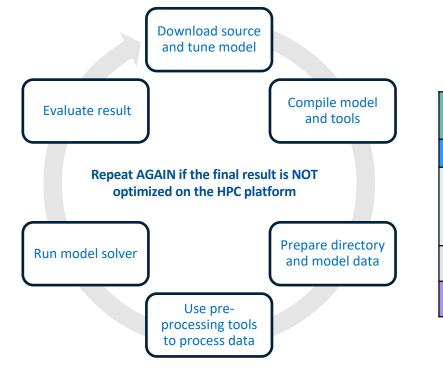

V: Applicable | O: Conditional | -: Not Applicable

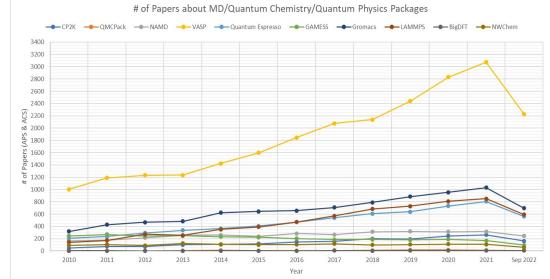

C Scalability and Parallelism

- Even when utilizing the same compute nodes within the same system, scalability can be influenced by the characteristics, parallelism, and model parameters of different workloads and their datasets
- BIOS settings and OS configuration in a system, network connectivity, and data I/O operations in storage also impact scalability in a cluster system.


www.qct.io

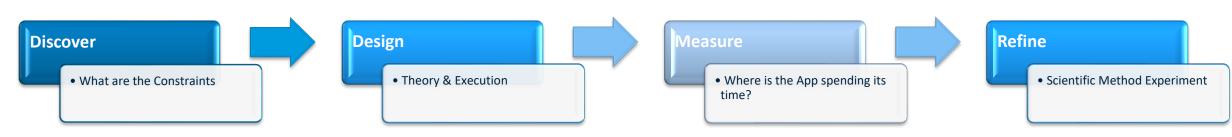
System Environment


To measure scalability, compare the execution of a workload on a single node in SA (System A) with SB (System B), and then expand SB by adding servers from 1 node, 2 nodes, up to 8 nodes.



Workload Analysis for Optimization

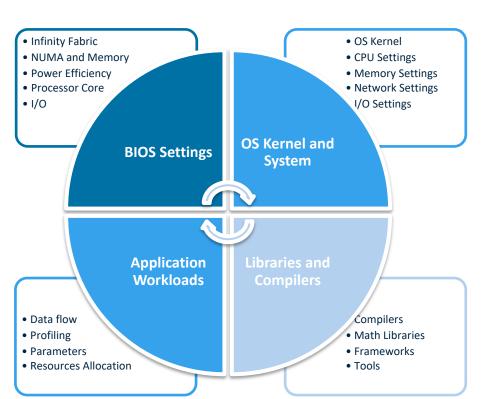
- List several key HPC/AI applications used in vertical fields to optimize their performance with enabled CPU/GPU features
- Collaborate with vertical researchers, experts, ISV's and vendors to come out the BKC (Best Known Configuration) on system platforms with best practices in optimization to boost performance for vertical workloads



Workloads		Machine Learning		Data Analytics		High Performance Computing							
						Life Science		Earth Exploration		FSI		Manufacturing	
Category	Туре	Training	Inference	Real Time	Batch	DNA Sequencing	Molecular Dynamics	Seismic Processing	Reservoir Engineering	Trading	Risk Mgmt.	EDA	CAE
Compute- bound	INT8 / INT16 / INT32	+	+	++	++					+	+		
	FP16 (HP)	++	+++	+	+								
	FP32 (SP)	+++	++	++	+++	++	+++			++	++		
	FP64 (DP)				+	+	+	+++	+++	+	+	+++	+++
Memory- bound	Shared	+++	+	++	+	+++	++	+++	++	+++	++	+	+++
	Distributed	+		+	++	+	+++	+	++	+	++	+++	+++
I/O-bound	Network	+++	++	+++	++	+	++	+	++	+++	+	+++	++
	Storage	+++		+	+++	+++	+	+	++	+	++++	+++	+

www.qct.io

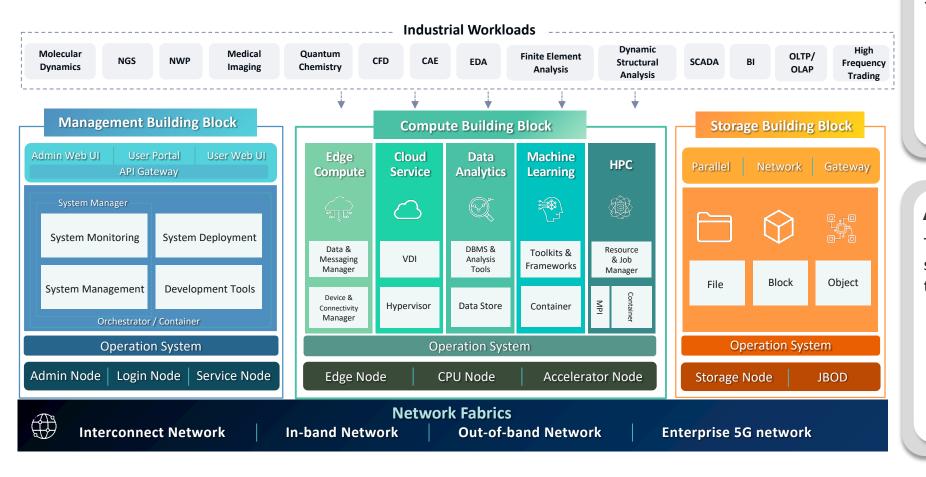
• Considerations for Performance Optimization


- Workloads Characteristics
 - CPU Intensive / Memory Intensive / IO Intensive
 - Data pattern and workflow

- System Architecture

- Bare Metal to Virtualization / Containerization
- Single node to Multi-nodes
- Multi-cores to many-cores system
- Heterogeneous computation between CPU and accelerators
- Interconnections between nodes (bandwidth, latency)
- I/O types and storage performance
- Software Stack and Programming Environment
 - Combinations of libraries and compilers, compiling options, inter-connections, and workload component resources allocation

Approaches to optimize workload performance


- **Exploit pattern and data flow** find the best-fit and deliverable architecture with the underlying hardware and infrastructure/middleware layers for major workloads
- Application performance management a set of monitoring and control tools enable users to tune their application environments
- Hardware/software pathing a vendor-driven effort that involves finding ways to enable a workload to move most expeditiously between middleware and infrastructure layers
- Tuned to the task matching a workload to the hardware platform best suited to serve
 - Reference Architecture
 - Best Practices

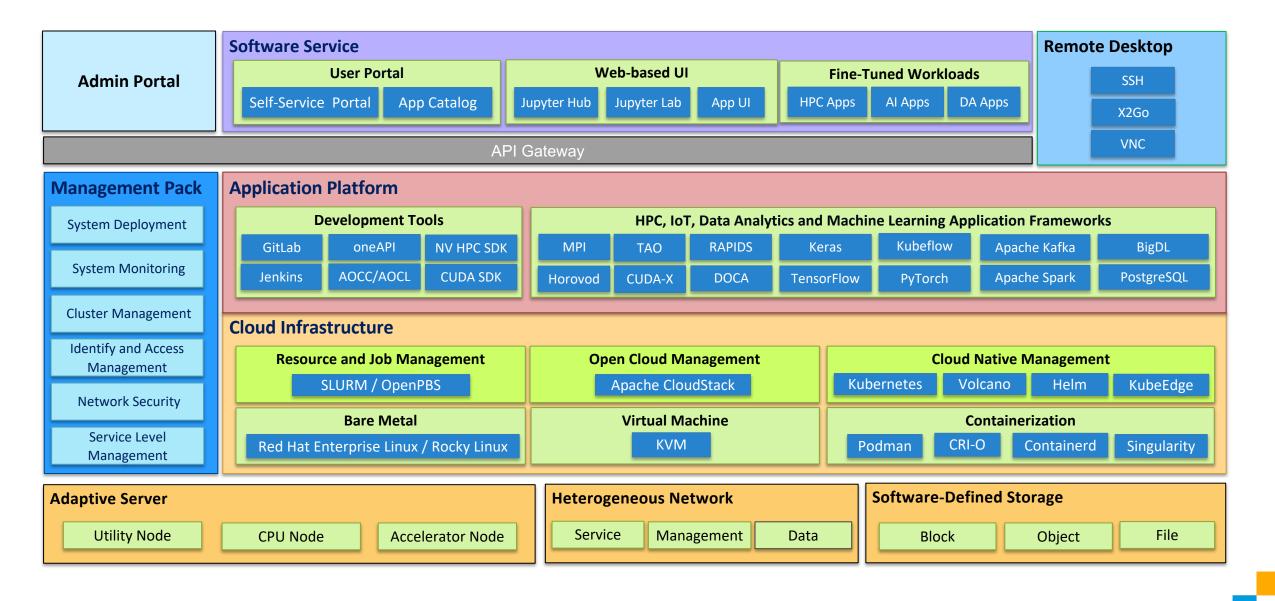
Workload-Driven Infrastructure for HPC/AI Workloads

QCT POD is a **Platform on Demand** concept, which provides a **pre-validated** and **pre-configurated onpremises** system with **best practice** software and hardware **integration for HPC/AI/DA workloads**.

Developers

Provide a complete development platform and pre-compiled program modules to speed up the development process

- Robust Development
 Environment
- Fine-tuned Application
 Workloads


Administrators

Through the system management module to simplify the deployment and management to improve the efficiency

- Rapid System Deployment
- Realtime Monitoring
- Simplified Cluster
 Management

Odern HPC/AI Workload-Driven System Architecture

Best Practices - QCT DevCloud Program

www.qct.io

56 \land 🛆

QCT DevCloud is a comprehensive HPC/AI/DA environment for user to experience QCT POD solution and infrastructure expertise. It includes QCT precompiled workloads and development tool kits support across a range of QCT hardware platforms, allowing end users to remote access and test their applications on a cluster environment.

Heterogenous computing platform with HPC, AI, DA tool kits

Cloud-native & Baremetal environment with resource and job management tools

QCT precompiled workloads

Molecular Dynamics GROMACS | LAMMPS | NAMD

Computational Fluid Dynamics OpenFOAM

Quantum Chemistry Quantum Espresso

Numeric Weather Prediction WRF Development toolkits

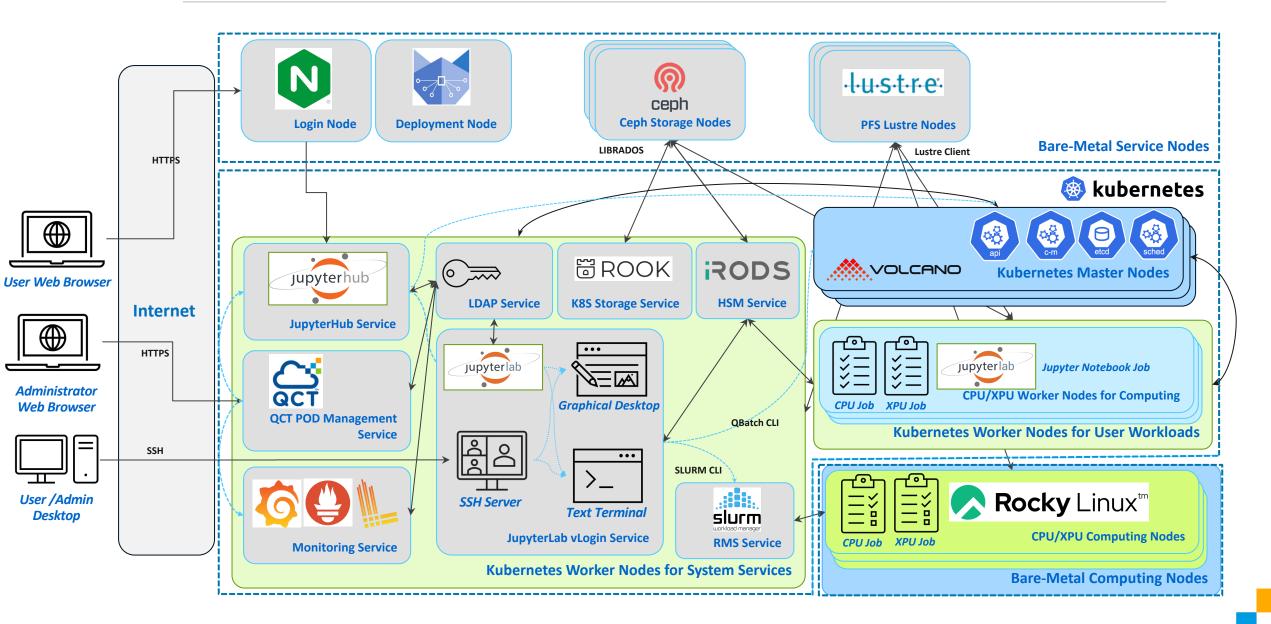
Computational Env. JupyterHub

Frameworks Pytorch | Tensorflow

Compiler & Libraries Intel oneAPI | AMD AOCC/AOCL | Nvidia HPC SDK

Development Tools Paraview | LMOD

Cluster management and real-time monitoring


Software defined storage with data tiering management

Management tools

Storage system iRODS | Ceph | Lustre System Monitoring Prometheus | Grafana System Management Volcano | SLURM | K8s | iRODS Operating System Rocky Linux

System Architecture for QCT DevCloud

C The Value of QCT's Solution Offerings

