
Q C T C O N F I D E N T I A L

Optimizing HPC System Architecture
through Workload-Driven Design Strategies

Stephen Chang

Agenda

• Introducing the significance of workload-driven design in maximizing
HPC system efficiency

• Key architectural considerations for scalability and performance in
optimizing HPC system architecture

• Reference architecture and best practices in workload-driven
infrastructure for HPC/AI workloads

2

Next Generation
Sequencing

Finite Element
Analysis

Numeric Weather
Prediction

Computation
Fluid Dynamics

Molecular
Dynamics

Quantum
Chemistry

Electronic
Structure

Industrial Workloads

CAD / CAM / CAEBI HFT / RMEDA SCADA OLTP / OLAPAR/VR Data Lake / DW

Dynamic Structure
Analysis

Manufacturing Automotive Healthcare Higher Education & ResearchFinancial

Infrastructure for HPC / AI / DA Workloads

Bare-metal | Virtual Machine | Container

Converged HPC & AI & DA Workloads

Modern Heterogeneous Architecture Traditional Monolithic Architecture

HPC workloads AI workloads

Bare-metal

Pain
Points Benefits

Limited human resources to manage multiple system
Inefficiency for the resource allocation
Cost more and without synergy

Easy Management
Effectively handle evolving workloads
Cost-effectiveness and reduce TCO

AI

DA workloads

3

Significance of workload-driven design in
maximizing HPC system efficiency

Workload-Centric Approach

Performance Optimization

Resource Allocation

Customization

Designing HPC/AI systems based on
workloads

Scalability

Performance Bottlenecks

Heterogeneous Architectures

Load Balancing

Adaptive Strategies

Workload-driven design Improves
performance, scalability, and resource
utilization

Improved Performance

Efficient Resource Utilization

Cost-Effectiveness

Future-Proofing

4

What is Workload-Driven Design?

5

System-Centric Design vs Workload-Driven Design

Traditional System-Centric Design Modern Workload-Driven Design

Pros

• Simplicity:
Easy to deploy and manage

• Familiarity:
Established design principles and practices

• Cost-effectiveness:
Lower upfront costs

• Optimized Performance:
Tailored architecture for specific workloads

• Scalability:
Efficiently scales to handle increased workload demands

• Efficient Resource Utilization:
Allocates resources effectively

Cons

• Suboptimal Performance:
Not fully leverages workload characteristics

• Limited Scalability:
May have performance limitations and resource constraints

• Inefficient Resource Utilization:
Resources may not be optimized for specific workloads

• Complexity:
Requires specialized knowledge and expertise

• Customization Effort:
Requires additional time and effort

• Potential Higher Costs:
Investments in specialized hardware and software

Planning System Architecting Evaluation

Implementation
and Collaboration

Service Provisioning

Planning Workload-Driven
Design

Rapid Deployment

Integration and
Automation

Service Provisioning

Private

Public

• Understand the characteristics and requirements of different workloads to
tailor the system architecture

– Workload Types
• Identify different types of workloads such as scientific simulations, data analytics,

machine learning, and graphics rendering.
• Each workload type has unique computational patterns and requirements.

– Computation Characteristics
• Study the computational requirements, including the nature of computations

(e.g., floating-point intensive, integer operations), parallelism potential, and load
balance.

– Memory Requirements
• Determine the memory demands of the workload, including the working set size,

memory access patterns, and data locality
– Communication Patterns

• Analyze the communication patterns between compute nodes or processes
within the workload.

• This includes examining the volume, frequency, and patterns of data exchanges.

• Highlighted Considerations:
– Processor architecture and selection (e.g., multi-core, many-core,

accelerators)
– Memory hierarchy and bandwidth requirements
– Interconnect technologies and topologies
– Storage system design (e.g., local, distributed, parallel file systems)
– Power and cooling considerations for high-density and high-performance

systems

6

Key Architectural Considerations

Architectural Consideration for CPU
VASP

The Vienna Ab initio Simulation Package (VASP) is a
computer program for atomic-scale materials modeling
based on first principles.

• Version: 6.3.2
• Release Date: 28th June 2022
• Web site : https://www.vasp.at/
• Compile with : Intel oneAPI 2023.1.0
• Test case : CuC_vdw, GaAsBi-512, Si256-VJT-HSE06 and Si-

Huge
• VASP work support : Jyh-Pin Chou, Associate Professor, Dep.

of Physics, NCUE

1.0
1.1

1.5

1.0 1.0

2.1

1.0
1.1

2.4

1.0
1.1

2.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7763 7773X 9684X 7763 7773X 9684X 7763 7773X 9684X 7763 7773X 9684X

CuC_vdW GaAsBi_512 Si256_VJT_HSE06 Si-Huge

Sp
ee

d
U

P

VASP with 2x AMD 7763 (64c/2.45G/256MB), 7773X (64c/2.2G/768MB), and 9684X (96c/2.55G/1152MB)

CuC_vdw

GaAsBi_512 Si256_VJT_HSE06

Si-Huge

7

https://www.vasp.at/

8

Architectural Consideration for GPU

Workloads \ GPU Server Systems System A
CPU:GPU (1:1)

System B
CPU:GPU (1:2)

System C
CPU:GPU (1:4)

Scientific Simulations and Modeling

Computational Fluid Dynamics (CFD) O/V O -/O

Molecular Dynamics (MD) V O/V O

Numerical Weather Prediction (NWP) O -/O -

Computational Chemistry V O O

Quantum Mechanics / Physics O/V -/O -

Next-Generation Sequencing (NGS) O -/O -

Finite Element Analysis (FEA) O -/O -

Image Processing and Visualization

Cloud Gaming - V -/O

3D Modeling and Computer-Aided Design (CAD) O V -/O

Video Transcoding and Streaming - V -/O

Virtual Reality (VR) and Augmented Reality (AR) - V -

Scientific Data Visualization and Analytics -/O V -

Medical Diagnostics, Imaging and Visualization -/O V -/O

Virtual Desktop Infrastructure (VDI) - V -

Video Analytics and Surveillance - V -

Machine Learning and Artificial Intelligence

Image Classification and Object Detection V V O/V

Natural Language Processing (NLP) with Large Language Model (LLM) O -/O V

Virtual Assistants and Chatbot -/O -/O -

AI Generated Content (AIGC) with Generative Adversarial Networks (GAN) O O V

Recommendation Systems O/V O/V -/O

V: Applicable | O: Conditional | -: Not ApplicableSystem A: MBX-based with 1 GPU | System B: PCIe-based with up to 4 GPUs | System C: SXM5-based with up to 8 GPUs

• Even when utilizing the same compute nodes within the same system, scalability can be influenced by the characteristics, parallelism, and model
parameters of different workloads and their datasets

• BIOS settings and OS configuration in a system, network connectivity, and data I/O operations in storage also impact scalability in a cluster system.

9

Scalability and Parallelism

System Environment
To measure scalability, compare the execution of a workload on a single node in SA (System A) with SB (System B), and then expand SB by adding servers from 1 node, 2 nodes, up to 8 nodes.

Download source
and tune model

Compile model
and tools

Prepare directory
and model data

Use pre-
processing tools
to process data

Run model solver

Evaluate result

10

Workload Analysis for Optimization

• Different workloads have different needs and the best-fit architecture
based on their characteristics

• List several key HPC/AI applications used in vertical fields to optimize
their performance with enabled CPU/GPU features

• Collaborate with vertical researchers, experts, ISV’s and vendors to
come out the BKC (Best Known Configuration) on system platforms
with best practices in optimization to boost performance for vertical
workloads

Repeat AGAIN if the final result is NOT
optimized on the HPC platform

Workloads Machine
Learning Data Analytics

High Performance Computing
Life Science Earth Exploration FSI Manufacturing

Category Type Training Inference Real Time Batch DNA
Sequencing

Molecular
Dynamics

Seismic
Processing

Reservoir
Engineering Trading Risk Mgmt. EDA CAE

Compute-
bound

INT8 / INT16 /
INT32 + + ++ ++ + +

FP16 (HP) ++ +++ + +

FP32 (SP) +++ ++ ++ +++ ++ +++ ++ ++

FP64 (DP) + + + +++ +++ + + +++ +++

Memory-
bound

Shared +++ + ++ + +++ ++ +++ ++ +++ ++ + +++

Distributed + + ++ + +++ + ++ + ++ +++ +++

I/O-bound
Network +++ ++ +++ ++ + ++ + ++ +++ + +++ ++

Storage +++ + +++ +++ + + ++ + +++ +++ +

11

Performance Optimization

Discover

• What are the Constraints

Design

• Theory & Execution

Measure

• Where is the App spending its
time?

Refine

• Scientific Method Experiment

• Considerations for Performance Optimization
– Workloads Characteristics

• CPU Intensive / Memory Intensive / IO Intensive
• Data pattern and workflow

– System Architecture
• Bare Metal to Virtualization / Containerization
• Single node to Multi-nodes
• Multi-cores to many-cores system
• Heterogeneous computation between CPU and accelerators
• Interconnections between nodes (bandwidth, latency)
• I/O types and storage performance

– Software Stack and Programming Environment
• Combinations of libraries and compilers, compiling options, inter-connections, and workload component

resources allocation

• Approaches to optimize workload performance
– Exploit pattern and data flow - find the best-fit and deliverable architecture with the

underlying hardware and infrastructure/middleware layers for major workloads
– Application performance management - a set of monitoring and control tools enable users

to tune their application environments
– Hardware/software pathing - a vendor-driven effort that involves finding ways to enable a

workload to move most expeditiously between middleware and infrastructure layers
– Tuned to the task - matching a workload to the hardware platform best suited to serve

• Reference Architecture
• Best Practices

• Compilers
• Math Libraries
• Frameworks
• Tools

• Data flow
• Profiling
• Parameters
• Resources Allocation

• OS Kernel
• CPU Settings
• Memory Settings
• Network Settings
• I/O Settings

• Infinity Fabric
• NUMA and Memory
• Power Efficiency
• Processor Core
• I/O

BIOS Settings OS Kernel and
System

Libraries and
Compilers

Application
Workloads

Workload-Driven Infrastructure for HPC/AI Workloads

• Rapid System Deployment
• Realtime Monitoring
• Simplified Cluster

Management

Through the system management module to
simplify the deployment and management
to improve the efficiency

Administrators

Provide a complete development platform
and pre-compiled program modules to
speed up the development process

Developers

• Robust Development
Environment

• Fine-tuned Application
WorkloadsManagement Building Block

Admin Node Login Node Service Node

Operation System

System Monitoring System Deployment

System Management Development Tools

Orchestrator / Container

System Manager

API Gateway
Admin Web UI User Portal User Web UI

Operation System

Compute Building Block

Edge Node CPU Node Accelerator Node

HPCMachine
Learning

Data
Analytics

Cloud
Service

Edge
Compute

Data &
Messaging
Manager

Device &
Connectivity
Manager

VDI
DBMS &
Analysis

Tools

Toolkits &
Frameworks

Resource
& Job

Manager

M
PIHypervisor Data Store

Operation System

Storage Node JBOD

Storage Building Block

File Block Object

Parallel Network Gateway

Container

Container

Network Fabrics
Interconnect Network In-band Network Out-of-band Network Enterprise 5G network

AMolecular
Dynamics NGS Medical

Imaging
High

Frequency
Trading

Quantum
Chemistry CFDNWP EDACAE Finite Element

Analysis

Dynamic
Structural
Analysis

SCADA BI OLTP/
OLAP

Industrial Workloads

QCT POD is a Platform on Demand concept, which provides a pre-validated and pre-configurated on-
premises system with best practice software and hardware integration for HPC/AI/DA workloads.

12

Software-Defined Storage

API Gateway

Software Service

Admin Portal

Heterogeneous Network

FileObject

Cloud Infrastructure

Block

Adaptive Server

ManagementServiceUtility Node CPU Node Accelerator Node Data

Bare Metal Virtual Machine Containerization

Red Hat Enterprise Linux / Rocky Linux KVM SingularityPodman Containerd

Web-based UI

Jupyter Hub Jupyter Lab

User Portal

Self-Service Portal App Catalog

Remote Desktop

X2Go

VNC

SSH
App UI

CRI-O

Open Cloud Management

Apache CloudStack

Cloud Native Management
Kubernetes Volcano

Resource and Job Management

SLURM / OpenPBS Helm KubeEdge

Management Pack

System Monitoring

System Deployment

Cluster Management

Service Level
Management

Network Security

Identify and Access
Management

Fine-Tuned Workloads

HPC Apps AI Apps DA Apps

Application Platform
Development Tools

GitLab

Jenkins

oneAPI

AOCC/AOCL

HPC, IoT, Data Analytics and Machine Learning Application Frameworks

PyTorchTensorFlow

MPI

PostgreSQLApache SparkHorovod

Apache Kafka BigDLKeras KubeflowRAPIDS

DOCA

TAO

CUDA-X

NV HPC SDK

CUDA SDK

Modern HPC/AI Workload-Driven System Architecture

13

Storage system
iRODS〡Ceph〡Lustre

System Monitoring
Prometheus〡Grafana

System Management
Volcano〡SLURM〡K8s〡iRODS

Operating System
Rocky Linux

QCT precompiled workloads Development toolkits

Computational Env.
JupyterHub

Frameworks
Pytorch〡Tensorflow

Compiler &Libraries
Intel oneAPI〡AMD AOCC/AOCL〡
Nvidia HPC SDK

Development Tools
Paraview〡LMOD

Management tools

Molecular Dynamics
GROMACS〡LAMMPS〡NAMD

Computational Fluid
Dynamics
OpenFOAM

Quantum Chemistry
Quantum Espresso

Numeric Weather Prediction
WRF

Heterogenous computing platform with
HPC, AI, DA tool kits
Cloud-native & Baremetal environment
with resource and job management tools

Cluster management and real-time
monitoring
Software defined storage with data
tiering management

14

Best Practices - QCT DevCloud Program

QCT DevCloud is a comprehensive HPC/AI/DA environment for user to experience QCT POD solution and
infrastructure expertise. It includes QCT precompiled workloads and development tool kits support across a range of
QCT hardware platforms, allowing end users to remote access and test their applications on a cluster environment.

Bare-Metal Computing NodesKubernetes Worker Nodes for System Services

Internet

User Web Browser

Kubernetes Worker Nodes for User Workloads

Cluster Computing NodesCluster Computing NodesCPU/XPU Worker Nodes for Computing

Kubernetes Master NodeKubernetes Master NodeKubernetes Master Nodes

Cluster Computing NodesCluster Computing NodesCPU/XPU Computing Nodes

CPU Job

Jupyter Notebook Job

CPU Job

XPU Job

XPU Job

HTTPS

LDAP Service
JupyterHub Service

Monitoring Service

QCT POD Management
Service

K8S Storage Service

JupyterLab vLogin Service

SSH Server

Graphical Desktop

Text Terminal

Login Node

HSM Service

Deployment Node
Ceph Storage Nodes
Ceph Storage NodesCeph Storage Nodes

QBatch CLI

LIBRADOS

Administrator
Web Browser

HTTPS

Ceph Storage Nodes
Ceph Storage NodesPFS Lustre Nodes

Lustre Client

SSH

RMS Service

SLURM CLI

Bare-Metal Service Nodes

15

System Architecture for QCT DevCloud

User /Admin
Desktop

Reliable Hardware
Platform

Optimized and Pre-Validated
Architecture

Ease of Management
and Adoption

Available in Worldwide
Solution Centers

Provide a One-Stop-
Shop Experience

Innovative
Technology

16

The Value of QCT’s Solution Offerings

AI5G

w w w . q c t . i o

Thank You

